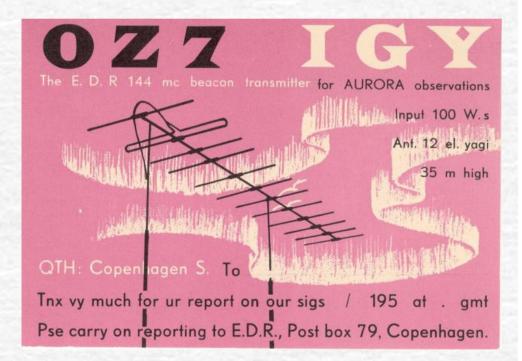
Next Generation Beacon

Autumn 2011 Bo, OZ2M

Contents


OZ7IGY and why talk about next generation beacons?

New technological possibilities in beacon designs

Project "Next Generation Beacon"

OZ7IGY historical status

- QRV since 1957
- Using
 contemporary
 technology
- Everybody could participate but technically driven

Operating OZ7IGY

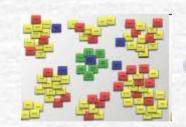
- ✓ Expenses ~2000 €/year, or using 800 W continuously
 - ~300 € from radio club memberships
 - ~1000 € form individual memberships
 - The rest
 - Member donations
 - The 70 MHz transverter project
- QRV
 - MHz: 28, 40, 50, 70, 144 and 432
 - GHz: 1, 2, 3, 5, 10 and 24
- How can we make OZ7IGY run another 50 years? The next generation beacon!

Digital modulation is the future - today

Sensitivity >10 dB better than CW

G4JNT: For easy copy CW at 18 WPM in 30 Hz bandwidth 10 dB S/N is needed

✓ Automated monitoring of conditions and comparison to average → alarm when x dB better than average → possible human communication


Modulation/sequence can be changed when improvements are available

Choosing modulation and sequence

Should it be based on ideology or users' need?

Digital for the sake of digital?

What do the users say and want?

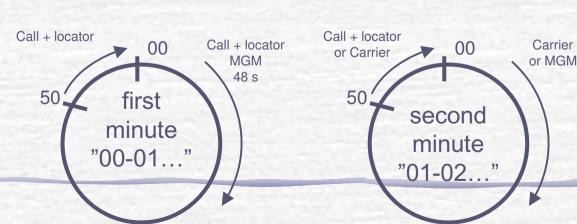
Both analog and digital modulations are the future

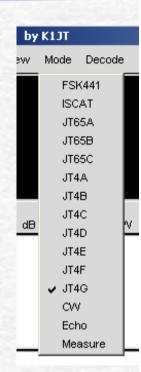
- Can be decoded both with and without a computer, like today
- Benefits from the digital capabilities
- Frequent ID to cope with QSB
- Possible to detect via unknown propagations

- Must be "zero beatable"
- Must fit into existing beacon spacing(s)
- Same modulation and sequence on "all" bands

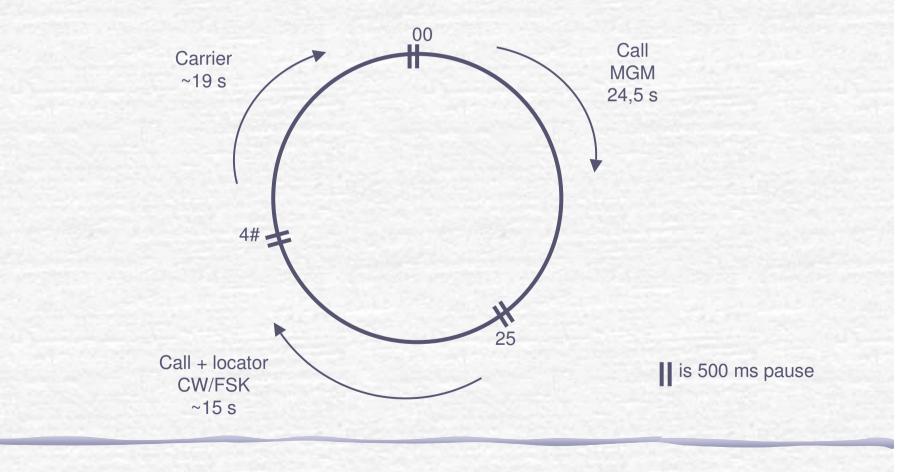
 The combination is possible using a smart sequence

Something exists, but .

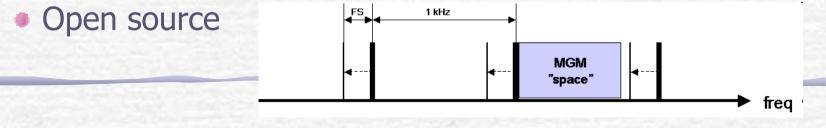

- **WSPR**
 - Designed for HF, OK for 6 m but not above
 - 2 min sequence and no CW ID
 - Not resistant to distortion or frequency jitter
- **r** JT65
 - Designed for EME, tropo and ionoscatter
 - I min sequence and no CW ID, or 2 min with CW ID
 - Only somewhat resistant to distortion



How about JT4x then?


- Designed for VUSHF communications
 Robust modulation and S/N –23,6 dB
 Can be used for 10 GHz EME (JT4F/G)
- Sequence
 - 1 min native (48 s)
 - 2 min with CW ID and carrier

• E.g.:



Here is what we want 1 min MGM + CW ID + Carrier

PI4 - PharusIgnis4

- A digital modulation (MGM) for beacons
- Maximum reuse of K1JT's JT4 modulation
 - Class C transparent
 - Omit locator from message, i.e. faster message
 - 4 tone FSK designed for beacon spacing
 - Tones spaced ~238 Hz, or ~715 Hz wide
 - Leaves guard space for above beacon using CW FSK
 - Wider spacing possible if needed, e.g. SHF bands

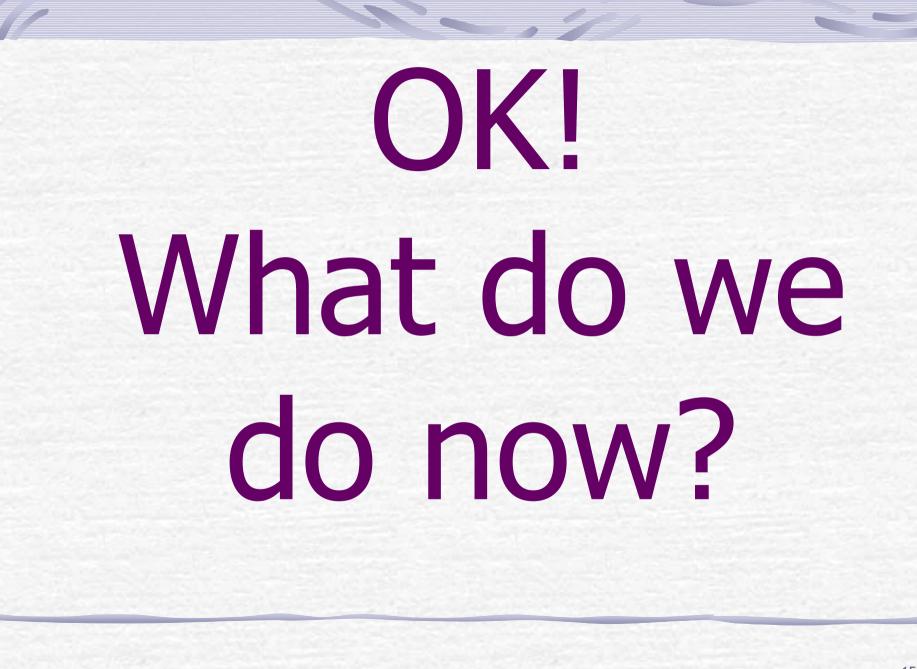
Comparing

Duration is 47,3 s

JT4

- 7 2 min sequence
- 13 char. message
- Call and locator
- "A"-"Z", "0"-"9", "/+-.?<space>" in total 42 chars
- F narrow, ~G wide
- S/N 23,6 dB
- Already in WSJT

C Duration is 24,5 s

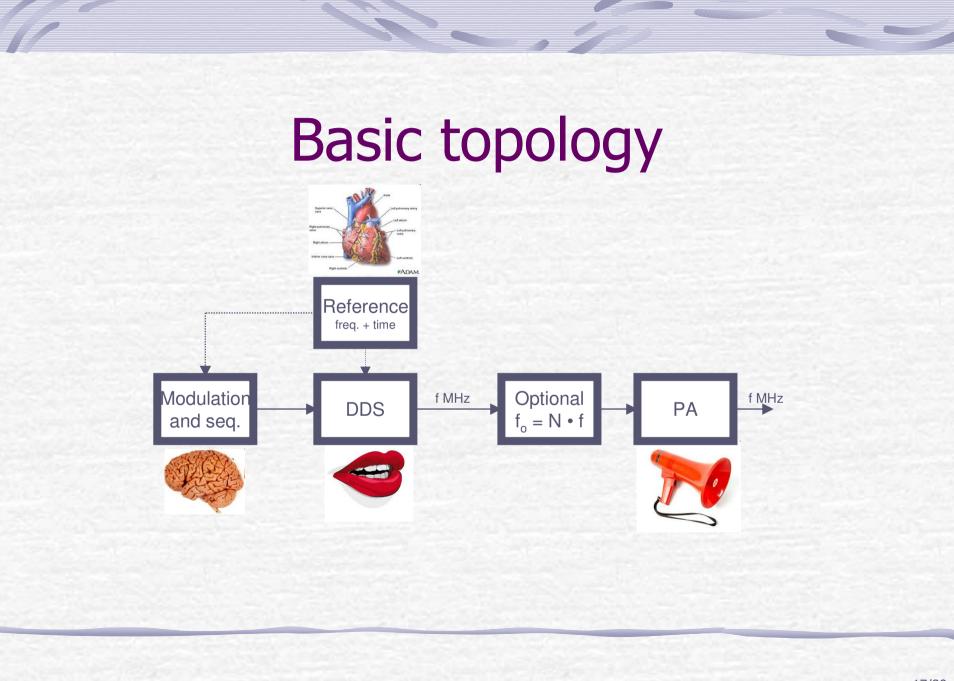

PI4

- 1 min sequence
- 8 char. message
- Call, or other msg.
- "A"-"Z", "0"-"9", "/<space>" in total 38 chars
- BW 715 Hz, just right
- S/N 22,3 dB
- IARU Reg. 1 standard

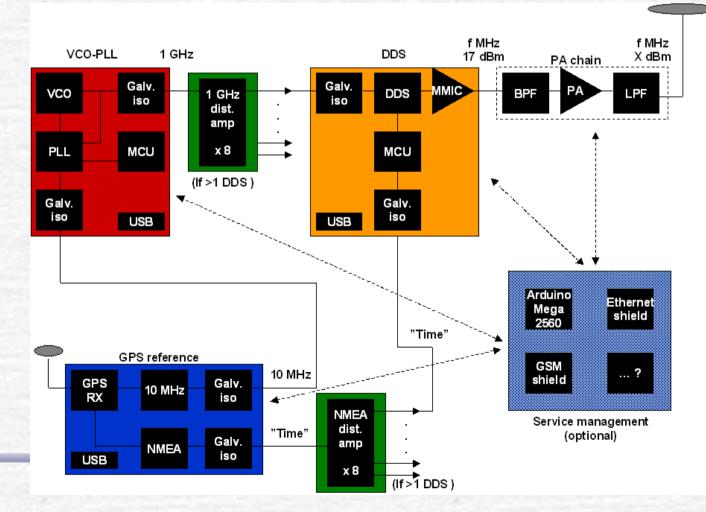
Decoding digital modulation

- The leading VUSHF digital modulation program is WSJT
- We are working on modifying WSJT
- To propose changes to Joe, K1JT

SpecJ	гру	205					w	<				2.01	<u> </u>	<u> </u>	<u> </u>				
Options	700			DF: -553				_		1000	1700				3				
о 600 ттт.Птт	700	800	900		1100	1200	1300	1400	1500	1600	1700	1800		2000	2100		2300	240	0 250 1111
					-							1							
1.000				1		1	1	-						1.11				10	
🕙 wsj	T 9.0	2 by	K1JT		-		-						-						
<u> </u>			Mode	Dec	ode	Save	Band	Help										_	
								_								E.	100	n	
																z:"			12
																1:			
															_				
																p: dc			12
															D	grd		T 2	. 5
31.2 FileID	2 Sync	dB	D	T DF	w	T	ne (s)			1to13	_1108	01_191	600						
191600) 15	-9	0.3	-2	24	•	123	45678	9012	3	_	1	. 0	A					*
																			-
		-	-			-			_	_			-	_		_			
Log <u>Q</u> SO			Stop			Monitor			Decode			Erase		se	T×St		Stop		
То	radio:				Looku	cup		Syne	: 1	T Zap		OZ7K	θY	Y				C	T× <u>1</u>
	Grid:	Ľ.		Add		ICI	-		400	E AFC		0Z7IGY 000						0	Тх <u>2</u>
								E Er			Ĭ	RO						0	Tx <u>3</u>
							H					RRR						C	T×4
2	201	1 A	ug (9					T×	First		73	_					C	T×5
	19	0:07	:36		Dsec	0.0		Gen Ma	sgs	<u>A</u> uto is	Off	CQ 02		1055				c	Tx6
												100 02						~	1.40



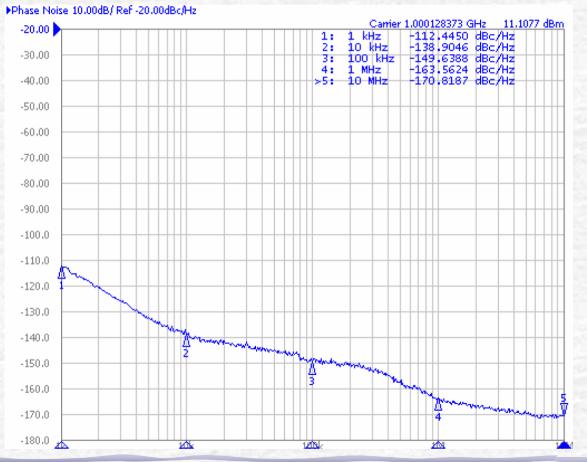
Project NGN Beacon


- The purpose of the project is
 - To start the discussion and identify the requirements
 - To develop the modulation (PI4), software and hardware to OZ7IGY
 - To make the platform available to others

The project team

- OZ1CKG, OZ2ELA, OZ2M, OZ9GE and OZ9ZZ
- Partial participation OZ1BV and OZ2CPU

Functional block diagram


18/29

1 GHz VCO-PLL clock

- Different VCOs depending upon sideband noise needs, e.g. Crystek CVCO55CX-1000-1000
- PLL is Analog Devices ADF4107
- MCU is ATMEL ATMega48/88/168/328
- Reference is 10 MHz from GPS disciplined osc.
- Performance
 - Output power ~14 dBm
 - Input lock from -10 dBm
 - Power consumption 1,5 W

Crystek CVC055CX-1000-1000

20/29

DDS freq. and modulation

- DDS is Analog Devices AD9912
- MCU is ATMEL ATMega128A
- Performance
 - Frequency range 137 kHz to 432 MHz, and 1,3 GHz⁺
 - Frequency resolution 4 µHz
 - Only frequency range specific components, e.g. same components for 28 MHz to 432 MHz
 - Harmonics <-20 dB rel. to carrier, BPF in PA chain</p>
 - Output power ~17 dBm
 - Power consumption 2 W

†: Super Nyquist principle

DDS board

- Galvanically isolated inputs and outputs
 DIP switches, and auxiliary inputs and outputs for unplanned features
- USB interface for S/W downloading and

management

Distribution boards

Necessary if more than one DDS board
 1 GHz distribution board performance

- 1 input to 8 outputs
- Port to port isolation ~40 dB
- Gain ~3,5 dB
- Power spread across ports less than 1 dB
- Power consumption 1,5 W

GPS reference

- The GPS reference provides 10 MHz, NMEA time signal and 1 PPS
- You can use any GPS that has 10 MHz and NMEA for the OZ7IGY platform
- A NGNB GPS reference will be developed with 10 MHz outputs and station clock features so you can use it at home too

Service management

- Service management is optional
- We suggest to use Arduino's open source hardware and software platform
- Arduino is easy to use and others develop generic hardware and libraries e.g. GSM and Ethernet interfaces for remote access and monitoring

Next generation SHF beacons

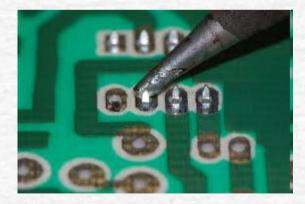
- Next generation SHF beacons can be made in two ways,
- I either multiplying RF or LO \rightarrow sideband noise is multiplied, or
- ✓ the Reverse DDS principle is excellent for retrofitting,
 XO clocks DDS and compares output with reference driving a varicap tuning the xtal
 → frequency specific

The real world

- The first OZ7IGY next generation beacon on air in autumn 2011 on 50 MHz
- Other beacons from 28 MHz to 1,3 GHz will follow during autumn and winter as time permits
- Live demonstrations in 2011
 - Nordic VHF Meeting, June
 - Weinheim UKW-Tagung, September
 - RSGB Convention, October

Conclusion

- The next generation beacon platform that is frequency and time locked is on the air
- A one minute mixed mode (MGM, CW ID and carrier) sequence has been developed that meets the requirements
- "Any" modulation and sequence is possible, e.g. IBP, JT4, JT65, PI4, WSPR or classic CW ID and carrier


More information

The NGNB project

- www.rudius.net/oz2m/ngnb
- Bo, OZ2M, oz2m rudius net

PCBs, partial kits and plug-n'-play boards

OZ7IGY
www.oz7igy.dk
Ivan, OZ7IS, oz7is yahoo dk

