Next Generation Beacons

Ham Radio Friedrichshafen 2015-06-26 • Bo, OZ2M

Contents

OZ7IGY in short

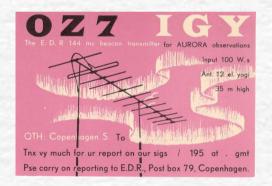
Modern beacons and transmission sequence

PI4 – A MGM for beacon purposes

Hardware – Next Generation Beacons

The world's oldest beacon

- ✓ OZ7IGY has expenses of ~2300 €/year, coming from using 800 W continuously
 - ~400 € from radio club memberships
 - ~1500 € form individual memberships
 - Member donations
 - The 70 MHz transverter project
 - The Next Generation Beacons project
- **C**QRV
 - MHz: 28, 40, 50, 70, 144 and 432
 - GHz: 1, 2, 3, 5, 10 and 24

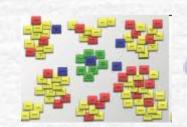


Bold: PI4 + CW + carrier

What is a beacon?A beacon is transmitting all the time

It is reliable

It is on frequency


Status is publicly know and updated

It is not an ego booster!

Collecting the requirements Should it be based on ideology or the users' needs?

Digital for the sake of digital?

What do the users say and want?

Who are the potential users?

1	FM user (VUHF)	Never use beacons DX-ing has no appeal May become 3)
2a	Analog DXer	Understands propagations and beacons Not interested in digital communication
2b	Mixed mode DXer	Understands propagations and beacons Use whatever it takes to make a QSO and sees the benefits in both analog and digital
3	Digital user	Only preference is digital communication Does not really understand propagations May become 2b)

Empirically found

Don't ask the users!

They don't know what they want Henry Ford: "If I had asked people what they wanted, they would have said faster horses"

The purpose of the Next Generation Beacons project was to start the discussion and identify the requirements (for OZ7IGY)

Digital modulation is the future - today

- Sensitivity >10 dB better than CW
 - G4JNT: For easy copy CW at 18 WPM in -9,2 dB S/N is needed (2,5 kHz)
 - AMSAT: Median –14,6 dB, top quartile –17,6 dB, top 1% -20,6 dB (2,5 kHz)
- ✓ Automated monitoring of conditions and comparison to average → alarm when x dB better than average
- Long term analysis 24 h, (7 days), 28 days, one year and 11 years
- Modulation/sequence can be changed when improvements are available

Framework for future beacons

- Can be decoded both with and without a computer, like today
- Benefits from the digital capabilities
- Frequent ID to cope with QSB and "it is not a birdie"
- Possible to detect via unknown propagations

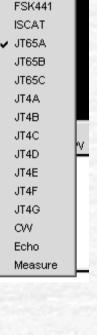
- Must be "zero beatable"
- Must fit into existing beacon spacing(s)
- Same modulation and sequence on "all" bands

The combination may force a new sequence

Sensitivity is nonsense

It is not all about the lowest S/N number

Many people are lured by the S/N value(s)


Sensitivity is one thing robustness is just as important – it is all about link probability

There are no free lunches when it comes to sensitivity, flexibility, speed and robustness

Something exists, but .

- JT9/WSPR
 - Designed for HF, OK for 6 m but not above
 - 2 min sequence and no CW ID
 - Not resistant to distortion or frequency jitter
 - "Birdie like" from an analog point of view
- **r** JT65
 - Designed for EME, tropo and ionoscatter
 - I min sequence and no CW ID, or 2 min with CW ID
 - Only somewhat resistant to distortion

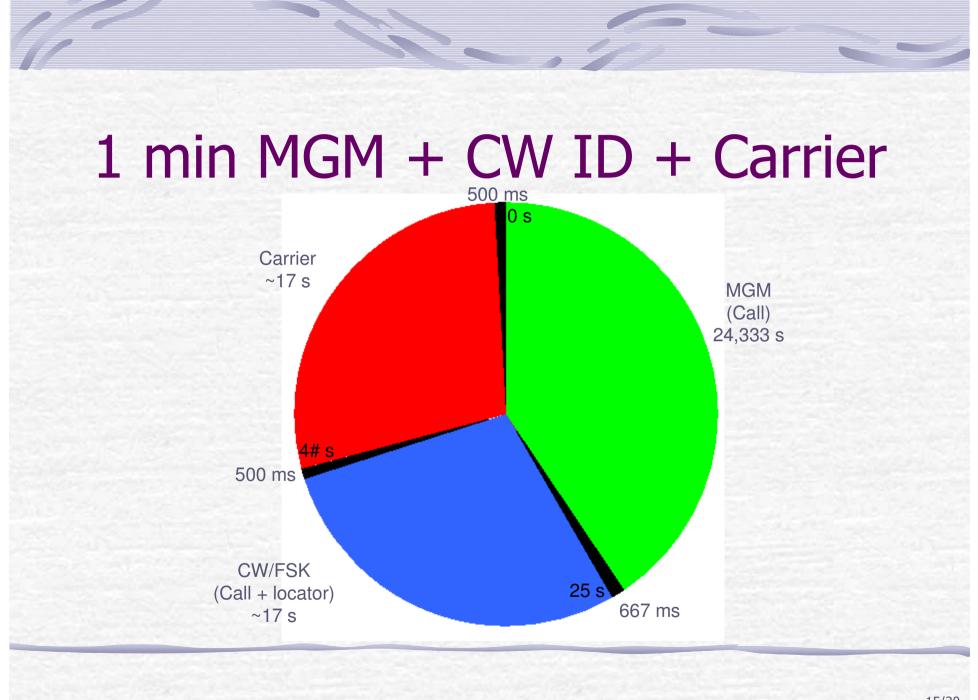
by K1JT

Mode Decode

Mode -Decode How about JT4x then? FSK441 ISCAT JT65A JT65B Designed for VUSHF communications JT65C JT4A JT4B ✓ Robust modulation and S/N –23,6 dB JT4C JT4D JT4E Can be used for 10 GHz EME (JT4F/G) JT4F 🗸 JT4G CW Sequence Echo Measure I min native (47 s) • 2 min with Call Call + locator 00 Call + locator 00 Carrier CW/FSK CW/FSK MGM CW ID and 50 s 47 47 first carrier second minute minute "00-01…" "01-02... 12/30

by K1JT

Not for human beings


01)	0:00-0:30	(MGM)	OZ7IGY/B JO55WM Only if GPS fix is valid	HHMMz is the GMT time from GPS If non valid GPS data at the
02)	0.30-1.00	(CW)	VVV OZ7IGY/B JO55WM HHMMz see C)	end of a CW message it append a "NOGPS" If no supply from AC source
03)	1:00-1:30	(CW)	VVV OZ7IGY/B JO55WM HHMMz	at the end of a CW message it append a "ACLOSS"
04)	1:30-2:00	(BPSK)	Carrier, see B)	A) Send a RF carrier > 5 s max power > 5 s -6 dB power > 5 s no power > 5 s
05)	2:00-2:30	(MGM)	OZ7IGY/B JO55WM Only if GPS fix is valid	-6 dB power > max power to the end of segment
06)	2:30-3:00	(CW)	VVV OZ7IGY/B JO55WM HHMMz see C)	B) Send a BPSK carrier for 30 s segment of alternate 1 s phase +-180° from 1 PPPs
07)	3:00-3:30	(CW)	VVV OZ7IGY/B 85 MASL HHMMz	GPS timing C) This line is ignored,
08)	3:30-4:00	(CW)	VVV OZ7IGY/B JO55WM HHMMz	except at boot-up and for loss of GPS signal. The first two sequence of group (1 min) are used for MGM if no
09)	4:00-4:30	(MGM)	OZ7IGY/B JO55WM Only if GPS fix is valid	GPS it send a "85 MASL 10 W MLOOP" CW message for two segment of 30 s.
10)	4:30-5:00	(CW)	VVV OZ7IGY/B JO55WM HHMMz see C)	The output carrier 50.471 MHz is locked to a GPS reference of +-0.1 Hz max
11)	5:00-5:30	(CW)	VVV OZ7IGY/B 10 W MLOOP HHMMz	Var. If no GPS the carrier 50.471
12)	5:30-6:00	(VAR)	Carrier, <i>see A)</i>	MHz use internal reference at +-5 Hz max variation

The users wanted

- Just the way it is, i.e. CW and carrier
- MGM only CW only
- More carrier, less carrier, no carrier
- ✓ EME training beacon, i.e. JT65B
- Identical sequence all the time

- MGM decodable via aurora and rain scatter
- Fits into the existing beacon spacing(s)
- Identical tuning for all parts of the sequence

PI4 - PharusIgnis4

- A digital modulation (MGM) for beacons
- Maximum reuse of K1JT's JT4 modulation
 - Class C transparent
 - Omit locator from message, i.e. faster message
 - 4 tone FSK designed for beacon spacing
 - Tones spaced ~234 Hz, or ~709 Hz wide
 - Leaves guard space for above beacon using CW FSK

1 kHz

MGM space"

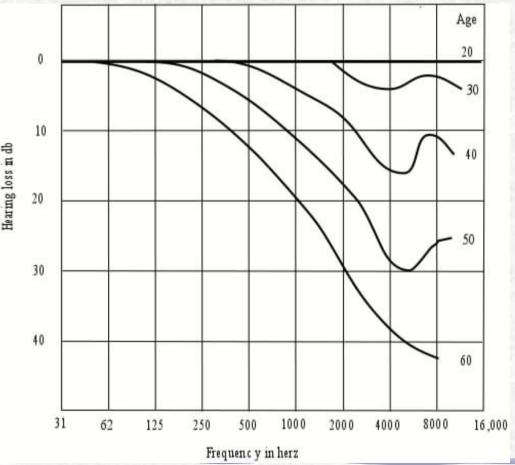
frea

16/30

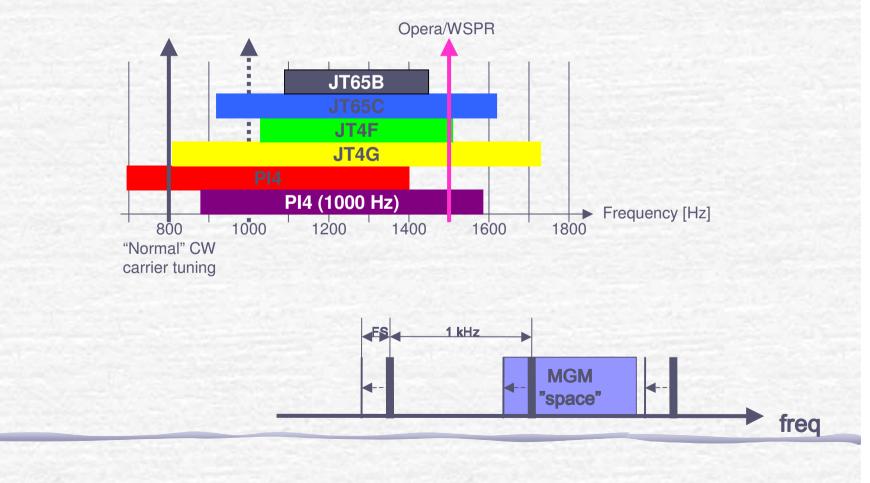
- Wider spacing possible if needed, e.g. SHF bands
- 800 Hz offset

Comparing JT4

- C Duration is 47,314 s
- 2 min sequence
- 13 char. message
- Call and locator
- "A"-"Z", "0"-"9", "/+-.?<space>" in total 42 chars
- F narrow, ~G wide
- S/N 23,6 dB
- Already in WSJT
- 262,5 time slots per min
 360 time slots per min


Duration is 24,333 s

PI4

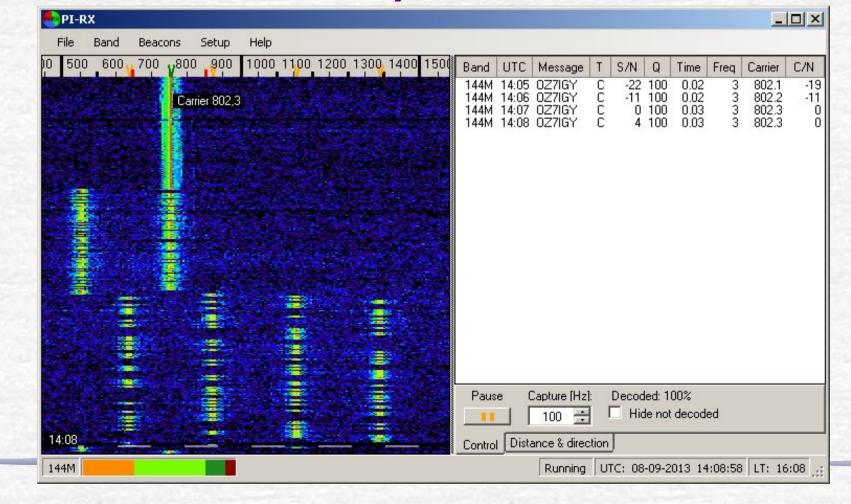

- 1 min sequence
- 8 char. message
- Call, or other msg.
- "A"-"Z", "0"-"9", "/<space>" in total 38 chars
- BW 709 Hz, just right
- S/N 22,2 dB
- PI-RX decoder

Human tuning offset – 800 Hz

SM6ESG says that he hears PI4 tone0 better than the carrier/CW from OZ7IGY

Frequency comparisons

Improving PI4

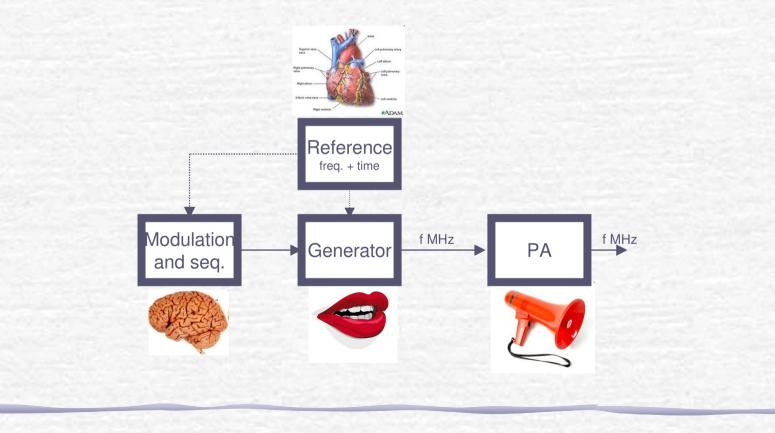

- Even before using PI4 we knew we could have improved the sensitivity by 0,8 dB by not being close to JT4
- In hindsight we should not have pursued the WSJT path
- Improved sensitivity by some 2 dB but more complex encoding yet same way of sync
- (Four times as fast PI4 repeated four times, 6 dB worse S/N, avg. improvement up to 3 dB)
- (A PI8 with eight tones and sync across all)

Decoding digital modulation

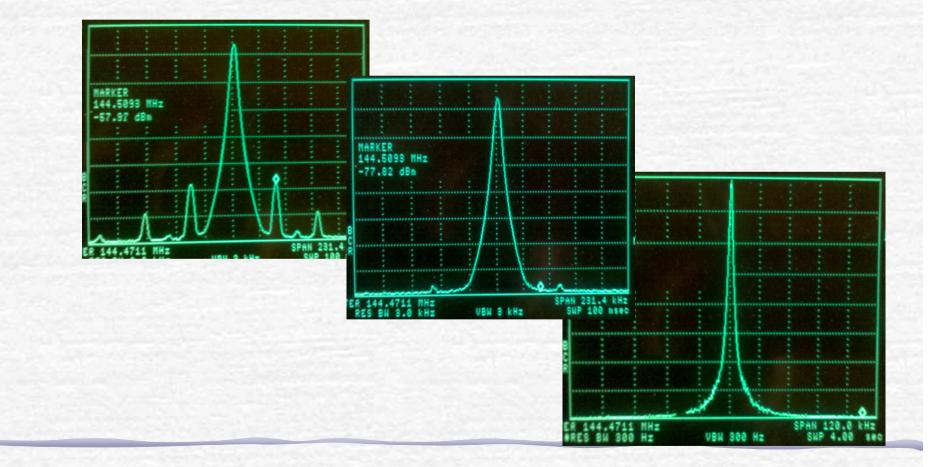
- The leading VUSHF digital modulation program is WSJT
- We had hoped to persuade Joe, K1JT, to implement a PI4 decoder but no response

	cJT by	1.000	74.0 0	F: -553			N	<	-1			Creati	<i>c</i> ,	<u> </u>	6 3	~			
Options	0 700							1400		1600									
	11144					1200	1300	1400	1500		1700	1800		2000	11111	2200	1111	2400 111 1	
								-											
					i.			1											
		1			4			1		1									
🂙 w	SJT 9.0	2 by	K1JT															_	
File	Setup	View	Mode	Deco	de S	Save	Band	Help											
																Μ	001	n	
															A	z:	168	3.4	12
															E	1:	10).()3
															Do	op:		1	L2
															Dg	grd	:-1	L5.	3
	31.2					Tin	ne (s)			1to13_	11080	1_191	600						
FileID	Sync 00 15	: dB -9			24 *		122	456789	0122			1	0	A		_			
1,210	.00 13		0.5	2			120	100702	/0120				. 0						
																			-
<u> </u>																_			
																_			
	Log <u>Q</u> S	50		Stop)		<u>M</u> or	nitor		₽	ecode			Eras	e		TxS	top	
	To radio	. [_	Look	qu		Sync	1	∏ Za	<u></u>	OZ7K	θY					œ	T× <u>1</u>
	Grid:	Ľ –		-1	Add	_		Tol 4			. 11	OZ7K	9Y 00	0				С	T× <u>2</u>
								Ere				RO						С	Tx <u>3</u>
							╞					RRR						C	T× <u>4</u>
			-						TxF	irst									and the second s
	201								1.0			73						0	T×5
		1 A 9:07			Dsec	0.0	9	, Gen Msç	gs [<u>A</u> uto is	Off	73 CQ 02	7IGY	J055			_	0	T× <u>5</u> T× <u>6</u>

PI-RX by OZ1CKG



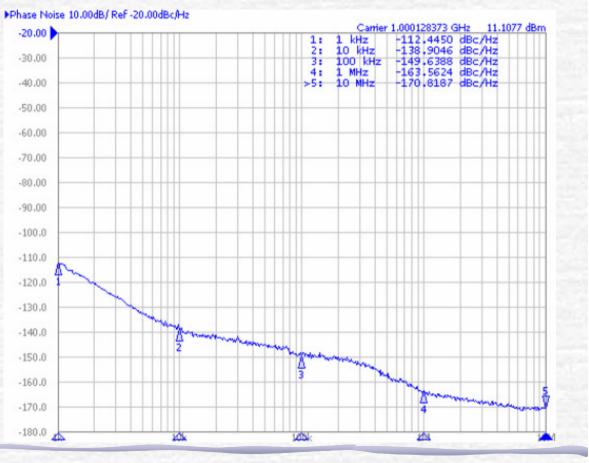
PI-RX decoder development


- 0.9.0.4, ~5, ~9, 0.9.0.10
- Aurora recordings by Jan, LA3EQ on 7 June 2013
- From 33% to 100% aurora decodes by optimizing the decoder performance
- Added wide scatter mode
- Handles multipath and MS

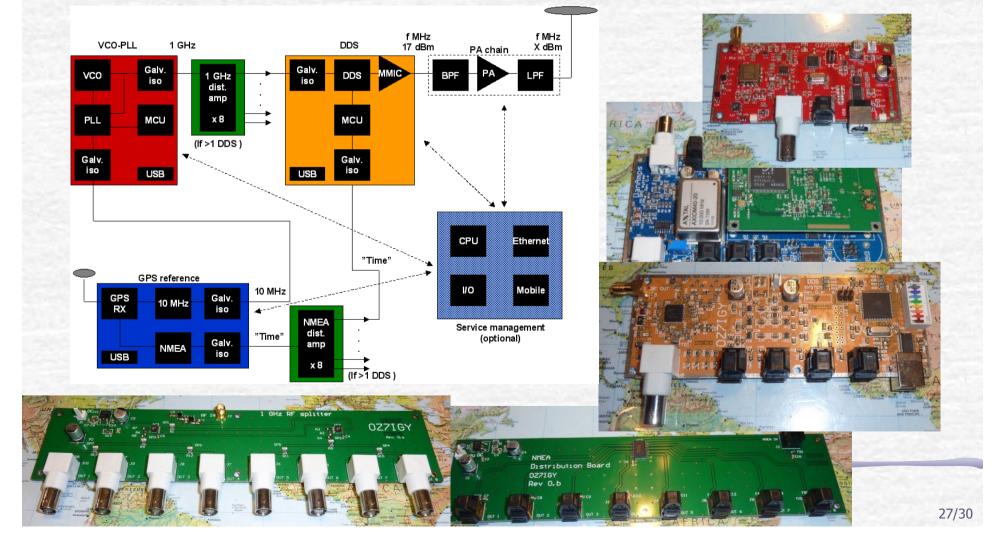
Decoder:	0.9.1.0	0.9.1.9	0.9.2.0	
04:31		OZ7IGY	OZ7IGY	
04:32			OZ7IGY	
04:33		OZ7IGY	OZ7IGY	
04:34			OZ7IGY	
04:35			OZ7IGY	
04:36			OZ7IGY	
04:37			OZ7IGY	
04:38		OZ7IGY	OZ7IGY	
04:39		OZ7IGY	OZ7'400 ¥500 6	00 700 800 800 1000 1100 1200 1300 1400
04:40		OZ7IGY	OZ	
04:41	OZ7IGY	OZ7IGY	OZ7	
04:42			OZ7	and the second second
04:43			OZ7	
04:44		OZ7IGY	OZ7	
04:45		OZ7IGY	OZ7 15:30	
04:46	OZ7IGY	OZ7IGY	OZ7	Carrier 922,1
04:47	OZ7IGY	OZ7IGY	OZ7	
04:48		OZ7IGY	OZ7	
04:49		OZ7IGY	OZ7	
04:50		OZ7IGY	OZ7	
04:51	OZ7IGY	OZ7IGY	OZ7	
04:52	OZ7IGY	OZ7IGY	OZ7, 15:29	the second se
04:53	OZ7IGY	OZ7IGY	OZ7	Carrier 944,3
04:54		OZ7IGY	OZ7IGY	
04:55	OZ7IGY	OZ7IGY	OZ7IGY	
04:56		OZ7IGY	OZ7IGY	
04:57		OZ7IGY	OZ7IGY	
04:58	OZ7IGY	OZ7IGY	OZ7IGY	
04:59	OZ7IGY	OZ7IGY	OZ7IGY	
05:00	OZ7IGY	OZ7IGY	OZ7IGY	
05:01	OZ7IGY	OZ7IGY	OZ7IGY	
05:02	OZ7IGY	OZ7IGY	OZ7IGY	
05:03		OZ7IGY	OZ7IGY	
05:04		OZ7IGY	OZ7IGY	
05:05			OZ7IGY	
05:06		OZ7IGY	OZ7IGY	

Beacon hardware for dummies

Close in spectrum matters!

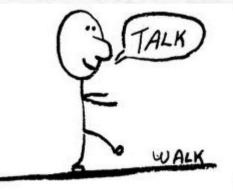

25/30

Please take care!


It is not just about harmonics

Phase noise

Inband spurii



Next Generation Beacons

PI4 beacons on the air

- OZ7IGY March 2013, 2 m and 6 m (all)
- IW9GDC/B August 2013, 4 m
- DB0JG February 2014, 70 cm
- DB0IH July 2014, 70 cm
- ED5YAE August 2014, 3 cm
- PE1MXP/B September 2014, 4 m
- DB0LTG January 2015, 23 cm
- GB3MHZ April 2015, 3 cm
- SK4MPI Summer 2015, 2 m (/6 in June)
- GB3CFG Summer 2015, 4 m
- Next Generation Beacons hardware also in ON, OH, K and VK
- Another handful is in the pipeline for 2015

Conclusion

- Find out what the users want and what is needed – don't just use what is available
- ✓ PI4 has been decoded using PI-RX via aurora, rain scatter and EME → PI4 is a general purpose MGM for beacon purposes
- Users really like the PI4 + CW + carrier sequence
- Available hardware solutions from state of the art to eBay-level and roll-your own

More information

PI4 specification

www.rudius.net/oz2m/ngnb/pi4.htm

PI-RX, PI4 decoder program
 www.rudius.net/oz2m/software/pi-rx

OZ7IGY home page
 www.oz7igy.dk